LOCAL MEASUREMENTS OF PHOTOCURRENT AND BAND GAP IN CdTe SOLAR CELLS

نویسندگان

  • Yohan Yoon
  • Jungseok Chae
  • Heayoung Yoon
  • Joshua Schumacher
  • Andrea Centrone
چکیده

Polycrystalline thin film technology has shown great promise for low cost, high efficiency photovoltaics. To further increase the power efficiency, a better understanding of microstructural properties of the devices is required. In this work, we investigate the inhomogeneous electrical and optical properties using local excitation techniques that generate excess carriers by a near-field light illumination or by a focused electron beam irradiation. The spatially-resolved photocurrent images of n-CdS / p-CdTe devices obtained by both techniques show high carrier collection efficiencies at grain boundaries. A novel and complementary technique, photothermal induced resonance (PTIR), is also used to obtain absorption spectra and maps in the near-field over a broad range of wavelengths. In PTIR a wavelength tunable pulsed laser is used in combination with an atomic force microscope tip to detect the local thermal expansion induced by light absorption. Sub-micrometer thick lamella samples of CdTe solar cells are measured, and the variation of local band-gap is analyzed. We discuss the resolution and the sensitivity of the techniques in the range of photon energies close to the band gap.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Device Modeling and Simulation of the Performance of Cu(In1-x,Gax)Se2 Solar Cells

Device modeling and simulation studies of a Cu(In1-x,Gax)Se2 (CIGS) thin film solar cell have been carried out. A variety of graded band-gap structures, including space charge region (SCR) grading, back surface region grading, and double grading of the CIGS absorber layer, are examined. The device physics and performance parameters for different band-gap profiles were analyzed. Based on the sim...

متن کامل

Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals t...

متن کامل

Band Gap Tunable Zn2SnO4 Nanocubes through Thermal Effect and Their Outstanding Ultraviolet Light Photoresponse

This work presents a method for synthesis of high-yield, uniform and band gap tunable Zn2SnO4 nanocubes. These nanocubes can be further self-assembled into a series of novel nanofilms with tunable optical band gaps from 3.54 to 3.18 eV by simply increasing the heat treatment temperature. The Zn2SnO4 nanocube-nanofilm based device has been successfully fabricated and presents obviously higher ph...

متن کامل

Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.

A series of diketopyrrolopyrrole (DPP)-based small band gap polymers has been designed and synthesized by Suzuki or Stille polymerization for use in polymer solar cells. The new polymers contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation of DP...

متن کامل

Contorted Hexabenzocoronenes with Extended Heterocyclic Moieties Improve Visible-Light Absorption and Performance in Organic Solar Cells

The large band gaps of existing contorted hexabenzocoronene derivatives severely limit visible-light absorption, restricting the photocurrents generated by solar cells utilizing contorted hexabenzocoronene (cHBC). To decrease the band gap and improve the light-harvesting properties, we synthesized cHBC derivatives having extended heterocyclic moieties as peripheral substituents. Tetrabenzofuran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015